Estimating Transient Water Storage from
Hurricane Harvey using GPS observations of
Vertical & Horizontal Land Motion

Chris Milliner, JPL — Jet Propulsion Laboratory, California Institute of
Technology

: urgma&m R.; UC Berkeley
Fu, Y., Bowllng_ Green



Introduction

* Question: How does water accumulate and
dissipate following a major hurricane? Can
we measure this using GPS data?

* Method: Use cGPS data to measure Earth’s
deformation from water mass, this can be
used to track the evolution of TWS

* TWS = standing surface water, ground water +
absorbed in soll.

* Motivation: Quantifying TWS important for:

* Understanding: ability of drainage systems to
respond and retain extreme influxes of water.

* Applications: Stored waterc‘ooses a secondary
and continued flood hazard, once released into
nearby streams. Observations of water storage
could potentially improve operational flood
forecasting used by flood managers.
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https://www.vox.com/science-and-health/2017/8/28/16217626/harvey-houston-flood-water-visualized
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* Challenge: Noise level of
vertical GPS is relatively high
(~3 mm).
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Non-tidal atmosphere + ocean loading
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ICA - Independent Component Analysis

2 Mixed signal
* |CA — identifies components that OWW
are statistically independent > . . . . ‘
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How many components to decompose
data? Stopplng rules

North et al. 1983
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“North’s rule of thumb”: Measure of seperability
Idea: Assess which eigenvalues exceed that expected from
a random process:

1. If uncert. exceeds separation, then component is

deemed difficult to separate from its neighbor and

from noise.
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Horn’s Parallel Analysis

Randomly scramble the data =
suite of random samples and
eigenspectra with 95% ClI.

If eigenvalue > 95% of eigenvalues
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Comparing CME estimates

Comparison of CME estiamtion
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CME removed

Hydrologic signal:
Area of second landfall
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Invert GPS (E,N,V) = water
thickness

* Invert subsidence for water
mass (Farrell, 1972).

» Assume a 1D layered, spherical
elastic structure - PREM velocity
model (Dziewonski and
Anderson, 1981).
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Discussion — Components of the hydrologic
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Precipitation Water storage = Evapotranspiration

River discharge from 31 USGS gauges — accounts for 25 km3 water loss, (minimum) ~27% of total,

Evapotranspiration —accounts for ~18% of water loss, estimated from Fisher et al. (2008) using:
*  FLUXNET eddy covariance towers --> water + energy fluxes
* MODIS instrument for radiation and vegetation indices

Surface runoff and groundwater flow not well constrained.
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